Introduction to SPSS +
 Statistical Tests for Quantitative Data

By Research Comm :)

Overview

1. Introduction to stats
2. Deeper dive into stats
3. SPSS functions

Why SPSS

- Easy to learn (just need to know how to click buttons)
- For quick analysis of results
- Relevant calculations required for the test are mostly spoon-fed to us :)
- Intuitive interface

Why not SPSS

- Unable to handle more complex statistical analyses
- \$\$\$:

1. (re)Introduction to stats

Opening a File

When starting SPSS Statistics

Data Setup

Each column represents a variable

Data View

↔		data-setup.sav [DataSet5] - IBM SPSS Statistics Data Editor						
File Edit	View Data	Iransform Analyze Graphs		Utilities Add-ons Window Help				
4 : gender								
	gender	education	age	qu1	qu2	qu3	var	var
1	Male	School	18	Strongly Agree	Agree	Strongly Agree		
2	Male	College	20	Agree	Neutral	Agree		
3	Male	University	24	Strongly Disagree	Strongly Disagree	Neutral		
4	Female	School	17	Agree	Strongly Disagree	Agree		
5	Female	College	19	Strongly Agree	Strongly Agree	Strongly Agree		
6	Female	University	21	Agree	Neutral	Agree		
7	Male	School	16	Agree	Agree	Neutral		
8	Female	University	23	Neutral	Strongly Disagree	Disagree		
1								

Data View Variable View

\square

TYPE
The variable's data type (e.g. numeric, currency)

WIDTH
Maximum no. of characters that can be entered

NAME
The name of the variable must start with a letter X characters: /, * or blank

LABEL

Explanatory label for variable

COLUMNS

How long each variable name can be (otherwise truncated)

VALUES

Text label for categorical variables

ALIGN
Alignment
of data in Data View

MEASURE
Variable's measurement type

Value Labels

Entering Continuous Data

Entering Categorical Data

Entering Categorical Data - Data View

2. Intro to Stats

- Population vs Sample
- Descriptive vs Inferential Statistics
- Experimental design

What is Statistics?

Statistics is the study of how to collect, organise, analyse, and interpret numerical information and data

We measure variables from individuals
Eg. measuring CrCl in CKD patients

Population vs Sample

Population Data	Sample Data
A group of people or objects with a common theme; when every member of that group is considered, it is a population	Small proportion of the population
Census	Sample
Expensive	Cheaper
Time-Consuming	More efficient

Population vs Sample

Parameters: Measure that describes the entire population

Statistic: A measure that describes only a sample of a population

Descriptive vs Inferential Statistics

Descriptive Statistics (for both samples and populations): Involve methods of organizing, picturing, and summarizing information from samples AND populations

Inferential Statistics (for samples ONLY): Involves methods of using information from a sample to draw conclusions regarding the populations (HYPOTHESIS TESTING)

THIS FORMS THE BASIS OF ALL THAT WE DO IN STATISTICS

Experimental Design

1. State a hypothesis
2. Identify the individuals/population of interest
3. Specify the variables to measure
4. Collect data from your sample
5. Use descriptive or inferential statistics to answer your hypothesis

Categorical vs Continuous

- You just need to be familiar with these 3 options for SPSS :D

Categorical vs Continuous

Experimental Design

EXAMPLE:

Hypothesis: Air pollution causes asthma in children who live in urban settings
Individuals/Population: Children in urban settings
Variables: Degree of air pollution (PSI?), Child is diagnosed with asthma

Experimental Design

Once we collect data for this study, we want to
a) compute descriptive statistics to describe

1. Associations \& Correlations between variables
2. Prediction \& Relationships
3. Group Differences
b) compute inferential statistics (aka hypothesis testing) to determine if the statistics in our sample can be generalised to the general population as population parameters

Experimental Design

The tests that we select are based on
a) The study design itself (especially the type of variables involved)
a) The data collected

3. More on stats

- Data normally distributed?
- Any outliers?
- Assumptions met for the specific test?**
- Reporting results

To first get an overview of your data...

- Menu bar -> Analyze -> Descriptive Statistics -> Explore...
- Input "Dependent List" and "Factor List"
- Factor list - e.g. can be used to separate "age" according to "male vs female"
- \quad Select everything else you want to find out in the options buttons at the side

Output:

- Summary
- Descriptives
- Outliers
- Histograms
- *Checking for normality (look for table with Shapiro-Wilk)

Normality Tests

	Numerical Method	Graphical Method
Tests	Skewness and Kurtosis values Shapiro-Wilk test	Normal Q-Q Plot Histogram
Advantages	Objective judgment of normality	Using individual's own judgment to assess normality
Disadvantages	Not sensitive enough at low sample sizes (i.e. not detecting violations of normality) Overly sensitive to large sample sizes (i.e. very small deviations from normality are detected)	Lack of objectivity

Skewness and Kurtosis

Shapiro-Wilk

HO: Data assumes normal distribution
If $p<0.05$-> Reject HO that data is normally distributed -> AKA Age is not normally distributed in this case

Tests of Normality

	Gender	Kolmogorov-Smirnov ${ }^{\text {a }}$			Shapiro-Wilk		
		Statistic	df	Sig.	Statistic	df	Sig.
Age	Female	. 205	37	<. 001	. 816	37	<. 001
	Male	. 125	63	. 016	. 907	63	<. 001
	fors Sign	cance Co					

Histogram and Q-Q Plots

Histogram

- Look for classic bell-curve shape
- Width of columns (bins) would also affect the shape

Q-Q Plots

- Data is normally distributed if it is positioned along the diagonal line

Transforming Data

Performing Transformations

\pm ta inde										
File Edit	View	Data	Transform	Analyze	Graphs	$\underline{\text { Utilities }}$	A		Wi	
			Compute Variable．．． Count Values within Cases．．．							
	gender							rar	Vi	
1	Male		츲 Recode into Same Variables．．．							
2	Male		Recode into Different Variables．．．							
3		Male	Automatic Recode．．．							
4		Male	目吕 Visual Binning．．．							
5		Male	目閴Rank Cases．．．							
6		Male	聀 Date and Time Wizard．．．							
7		Male	Create Time Series．．．							
8		Male	图園 Replace Missing Values．．．							
9		Male								
10		Male	Random Number Generators．．．							
11		Male	Eun Pending Transforms Ctrl＋G							
12		Male		6.01						
13		Malo		500						

Give a name to the new variable that will be created when you apply a transformation to an existing variable (e.g., you might call it "engagement_log10" if you want to apply a log10 transformation to the "engagement" variable).

Moderately, positively skewed data

Moderately, negatively skewed data

Strongly, positively skewed data

[^0]
Strongly, negatively skewed data

Extremely, positively skewed data

Extremely, negatively skewed data

也 Compute Variable \times

Target Variable: engagement_sqrt_ref

 dependent variable value
2. Add 1 to its value
3. Each dependent value has to be subtracted from the value in (2)

Apply reflect and inverse/reciproca I transformation

1. Find the largest 4. Take the inverse
SQRT(numexpr). Numeric. Returns the positive square root of numexpr, which must be numeric and not negative.
OK Paste Reset Cancel Help

Data Transformation

Positively Skewed	Negatively Skewed
Square Root	Reflect \& Square Root
Log	Reflect \& Log
Inverse/Reciprocal	Reflect \& Inverse/Reciprocal

o Mild outliers: > $1.5 \times$ IQR below Q1 or above Q3

Outliers

* Extreme outliers: > 3.0 x IQR below Q1 or above Q3

Statistics Final Exam Score

Dealing with outliers

If keeping outliers:

1. Run non-parametric test instead
2. Modify by replacing with a less extreme value (e.g. next largest value)
3. Transform the dependent variable
4. Include without change, if you believe result will not be affected (e.g. similar after running the test with and without the outlier)

Dealing with outliers

If removing outliers:

- Generally considered as last resort.
- In your paper: Provide information about the data points removed (e.g. their value and impact on results)

Acceptable in the following example: To investigate the effect of exercise on young males. One participant's cholesterol concentration was particularly high (outlier), indicating considerable risk of heart disease. If the study initially wanted only healthy individuals, and exclude those with risk of heart diseases, then the data can be removed.

Why is testing for normality important?

Data Setup	Parametric test	Non-Parametric test
1 Variable 2 Categories Between Subjects 1 Variable 2 Categories Within-Subjects	independent t-test	Mann-Whitney U test
1 Variable >2 Categories Between Subjects	paired t-test	Wilcoxon Signed Rank Test
1 Variable >2 Categories Within Subjects	One-way ANOVA 1 Variable (Correlation)	ANOVA

After selecting the appropriate tests...

- Pearson's correlation
- Independent t-test
- Mann-Whitney U test (non-parametric independent t-test)
- (One-way) ANOVA
- One-way repeated measures ANOVA (multiple paired-samples t-test)
- Linear regression

https://tinyurl.com/spsslkc

Pearson's correlation

Used to determine the strength and direction of a linear relationship between 2 continuous variables

Pearson correlation coefficient, r :
-1 (perfect negative linear relationship)
+1 (perfect positive linear relationship)
0 (no relationship)

Examples

1. To determine whether there is an association between exam performance and time spent revising
2. To determine whether there is a relationship between "amount of cigarettes reduced" and "withdrawal pain" in participants who failed to quit smoking after 6 months hypnotherapy intervention

Analyze -> Correlate -> Bivariate

Missing Values

- Exclude cases pairwise

Exclude cases listwise

Exclude cases pairwise: Any missing value or variable will only affect the analyses involving that variable

Exclude cases listwise: Any missing value or variable will affect all analyses involving that subject

Assumptions

1. Both variables are continuous (e.g. interval or ratio)
2. Both variables should be paired, each participant has 2 values: 1 for each variable (e.g. a student has 2 variables: revision time and exam performance)
3. Linear relationship between the 2 continuous variables
4. No significant outliers
5. Bivariate normality

Checking for linear relationship

Graphs -> Chart builder -> Scatter/Dot (drag and drop) -> Select x - and y-axis (drag and drop) -> Edit properties of axes under "Element Properties" -> Set 0 as minimum

If not linear?

1. Determine whether monotonic or non-monotonic relationship

2. If monotonic -> Go to Spearman's rank-order correlation OR try to transform data into linear relationship if ur a pro...
3. If non-monotonic -> may need to transform one or more variables to get a monotonic relationship

Interpreting results

	Coefficient value
$0.1<\|r\|<.3$	Strength of association
$0.3<\|r\|<.5$	Medium/moderate correlation
	Large/strong correlation

Table: Column meanings for the "Correlations" table.

Correlations

Coefficient of determination

		time_tv	cholesterol
time_tv	Pearson Correlation	1	$.371^{\prime \prime}$
	Sig. (2-tailed)		.000
	N	100	100
cholesterol	Pearson Correlation	$.371^{\prime \prime}$	1
	Sig. (2-tailed)	.000	
	N	100	100

**. Correlation is significant at the 0.01 level (2 -tailed).
$=$ square of correlation coefficient ($r^{\wedge} 2$)

- Proportion of variance in one variable that is "explained" by the other variable
-> e.g. If $r^{\wedge} 2=0.14$, then daily time spent watching TV statistically explained 14% of the variability in cholesterol concentration

Correlations

		time_tv	cholesterol
time_tv	Pearson Correlation	1	$.371^{\prime \prime}$
	Sig. (2-tailed)		.000
	N	100	100
cholesterol	Pearson Correlation	$.371^{\text {"' }}$	1
	Sig. (2-tailed)	.000	
	N	100	100

**. Correlation is significant at the 0.01 level (2-tailed).

Note: Statistical significance here does not determine the strength of the relationship
*In SPSS, p-value $=.000$ refers to $\mathrm{p}<0.0005$
Typically reported as p < 0.001
For p-values > 0.001, do write the actual values, rather than < 0.05

Reporting results

Statistically significant:
A Pearson's product-moment correlation was run to assess the relationship between cholesterol concentration and daily time spent watching TV in males aged 45 to 65 years. One hundred participants were recruited.

Preliminary analyses showed the relationship to be linear with both variables normally distributed, as assessed by Shapiro-Wilk's test ($p>.05$), and there were no outliers.

There was a statistically significant, moderate positive correlation between daily time spent watching TV and cholesterol concentration, $\mathrm{r}(98)=.37, \mathrm{p}<.0005$, with time spent watching TV explaining 14\% of the variation in cholesterol concentration.

Reporting results

Not statistically significant:
A Pearson's product-moment correlation was run to assess the relationship between cholesterol concentration and daily time spent watching TV in males aged 45 to 65 years. One hundred participants were recruited.

Preliminary analyses showed the relationship to be linear with both variables normally distributed, as assessed by Shapiro-Wilk's test ($p>.05$), and there were no outliers.

There was a no statistically significant correlation between daily time spent watching TV and cholesterol concentration, $\mathrm{r}(98)=.28, \mathrm{p}=.765$, with time spent watching TV explaining 9% of the variation in cholesterol concentration.

Table 1

Pearson correlations for main study variables

	Time watching TV	Cholesterol	CRP
Cholesterol	$.371^{*}$		
CRP	$.341^{*}$	$.886^{*}$	
TAG	$.312^{*}$	$.858^{*}$	$.981^{*}$

Note. CRP = C-Reactive Protein, TAG = Triglyceride, * $=$ statistically significant at $p<.05$ level.

Independent samples t-test

Parametric test used to determine whether difference between 2 independent groups is significant

Examples

1. Whether there is a statistically significant difference in salary (dependent variable) between "under 30y/o" and "above 30y/o" groups

- Differences between 2 independent groups

2. Whether there is a statistically significant difference in the body fat in mm (dependent variable) between the 2 groups split according to level of physical activity (independent variable) ('none', 'frequent' exercise)

- Differences between interventions

3. Whether the difference in change in blood glucose concentration for each group was significant in dietary group and control group at the end of the 6 week period (can also look at two-way mixed ANOVA or one-way ANCOVA)

- Differences in change post intervention

Assumptions

1. One dependent variable, continuous or ordinal
2. One independent variable, consisting of 2 categorical, independent groups
3. Independence of observations (e.g. same participant cannot be in more than 1 group, otherwise look at paired-samples t-test)
4. No significant outliers (dependent variables) within the groups of independent variables
5. Dependent variable approx. normally distributed for each group of independent variable
6. Homogeneity of variances of dependent variables in each group of independent variable

Analyze Graphs Utilities	Extensions	Window Help	
Power Analysis	$>$	$>$	Q

o Mild outliers: > $1.5 \times \mathrm{IQR}$ below Q1 or above Q3

* Extreme outliers: > 3.0 x IQR below Q1 or above Q3

Managing outliers

If keeping outliers:

1. Run non-parametric Mann-Whitney U test instead
2. Modify by replacing with a less extreme value (e.g. next largest value, meaning 2nd largest value $=5.55$, the altered value of outlier $=5.56$)
3. Transform the dependent variable
4. Include without change, if you believe result will not be affected (e.g. similar after running the test with and without the outlier)

If removing outliers:

Generally considered as last resort. Provide information about the data points removed (e.g. their value and impact on results)

Acceptable in the following example: To investigate the effect of exercise on young males. One participant's cholesterol concentration was particularly high (outlier), indicating considerable risk of heart disease. If the study initially wanted only healthy individuals, and exclude those with risk of heart diseases, then the data can be removed.

Effect Size

Table 4.3: Cohen's d .

Effect size (Cohen, 1988)

* Journals are increasingly asking for effect sizes to be reported whenever possible :/

Independent Samples Effect Sizes
95\% Confidence Interval

		Standardizer ${ }^{\text {a }}$	Point Estimate	95\% Confidence Interval		
		Lower		Upper		
Engagement with TV advert	Cohen's d		. 34638	. 748	. 101	1.385
	Hedges' correction	. 35341	. 733	. 099	1.358	
	Glass's delta	. 39339	. 658	-. 003	1.304	

a. The denominator used in estimating the effect sizes. Cohen's d uses the pooled standard deviation.
Hedges' correction uses the pooled standard deviation, plus a correction factor.
Glass's delta uses the sample standard deviation of the control group.

Statistical significance vs Effect size

Statistical significance: Only tells us whether there is a difference (whether an effect exists)

- DOES NOT tell us whether the difference is big, important or helpful in decision making
- If sample is sufficiently large, a stat test will almost always give significant difference
- E.g. increase in score by 1 point out of 100 points can also be significant...

Effect size: Tells us the magnitude of difference between groups

Statistical significance vs Clinical significance

E.g. Increased knee flexion angles in knee osteoarthritis

- MDC_90 value for knee flexion contracture: $\underline{+6 \text { degrees flexion (stratford) }}$
- If results from gait analysis shows statistically significant difference of less than 6 degrees of additional flexion -> Are these results clinically relevant?

Mann-Whitney U Test

Non-parametric test (equivalent of independent-samples t-test)

- Can be used when results that require independent-samples t-test do not follow normal distribution (from Shapiro-Wilk test), or have some outliers

Examples

1. Knee OA group vs Healthy group - comparing KOOS scores (0-100) or pain scores. Healthy group will likely have little to no knee pain and normal knee function. Knee OA group will likely have more pain, and poorer knee function, but these scores generally will not follow a normal distribution if sample sizes are not large enough
2. Working group vs Retired group - comparing stress levels (strongly agree, agree, neutral, disagree, strongly disagree).

Assumptions

1. One dependent variable, continuous or ordinal
2. One independent variable, consisting of 2 categorical, independent groups (e.g. male and female, employed and unemployed, intervention and control, bus and car)
3. Independence of observations (e.g. same participant cannot take both bus and car), otherwise go to Wilcoxon signed-rank test
4. Look at whether distribution of scores for each group of independent variable have same shape or different shape/variability

Additional steps...

Upon visual inspection of histogram, If shape of both groups have the same shape -> Test can compare medians

If shape of both groups do not have same shape -> Test can compare mean ranks

Independent-Samples Mann-Whitney U Test
Gender

Reporting results

For medians,
A Mann-Whitney U test was run to determine if there were differences in engagement score between males and females. Distributions of the engagement scores for males and females were similar, as assessed by visual inspection. Median engagement score for males (5.58) and females (5.38) was not statistically significantly different, $U=145, z=-1.488, p=.142$, using an exact sampling distribution for U (Dineen \& Blakesley, 1973).

For ranks,
A Mann-Whitney U test was run to determine if there were differences in engagement score between males and females. Distributions of the engagement scores for males and females were not similar, as assessed by visual inspection. Engagement scores for males (mean rank = 23.25) were statistically significantly higher than for females (mean rank=17.75), $\mathrm{U}=218, \mathrm{z}=-$ $3.422, p=.001$, using an exact sampling distribution for U (Dineen \& Blakesley, 1973).

One-way ANOVA

Parametric test (equivalent of multiple independent-samples t-test) used to determine whether difference between 3 or more independent groups
*Running multiple t-tests instead would increase Type I error rate. One-way ANOVA would control for the Type I error rate.

Examples

1. Whether there is a statistically significant difference in the body fat in mm (dependent variable) between the 3 groups split according to level of physical activity (independent variable) ('none', 'moderate', 'frequent' exercise)
2. Whether there is a difference in bone density (dependent variable) between the 3 groups split according to frequency of smoking (independent variable) (non-smoker, occasional, frequent)

Examples

3. Whether there is a difference in VO2max (dependent variable) between swimmers, runners and cyclists
4. Whether there is a difference in smoking cessation (dependent variable) based on treatment type (1 group with nicotine patches, 1 group with hypnotherapy, 1 group with moral support)

Assumptions

1. One dependent variable, continuous or ordinal
2. One independent variable, consisting of 2 (typically 3) or more categorical, independent groups
3. Independence of observations (e.g. same participant cannot be in more than 1 group)
4. No significant outliers (dependent variables) within the groups of independent variables
5. Dependent variable approx. normally distributed for each group of independent variable
6. Homogeneity of variances of dependent variables in each group of independent variable

- Analyze -> Compare means -> One-way ANOVA
- Options -> descriptive, homogeneity of variance test, Welch, means plot
- Post-hoc -> Tukey (homogeneity of variances not violated) + Games-Howell (homogeneity of variances violated)

Assumption of homogeneity of variances in a population:

Levene's Test for Equality of Variances

- If population variance of both groups is equal, $p>0.05$, meeting the assumption of homogeneity of variances
- If population variance of both groups is not equal, $p<0.05$, violating the assumption of homogeneity of variances

When homogeneity of variances is met:

- Refer to ANOVA table for results -> Tells us whether difference exists between any of the groups

Tukey post hoc test: To test all possible group comparisons -> Tells us exactly which groups are different

- Can also use Bonferonni

When homogeneity of variances is violated:

- Refer to "Robust Tests of Equality of Means" table for results of Welch's ANOVA

Games-Howell hoc test: To test all possible group comparisons -> Tells us exactly which groups are different

Effect size: omega squared ($\omega 2$) or partial eta squared ($\eta 2$)

Reporting results

One-way ANOVA not statistically significant, but variances were equal:
With test of assumptions: A one-way ANOVA was conducted to determine if the ability to cope with workplace-related stress (CWWS score) was different for groups with different physical activity levels. Participants were classified into four groups: sedentary ($n=7$), low ($n=9$), moderate $(\mathrm{n}=8)$ and high levels of physical activity ($n=7$). There were no outliers, as assessed by boxplot; data was normally distributed for each group, as assessed by Shapiro-Wilk test (p>.05); and there was homogeneity of variances, as assessed by Levene's test of homogeneity of variances ($p=.120$). Data is presented as mean \pm standard deviation. CWWS score increased from the sedentary (4.2 ± 0.8), to low (5.9 ± 1.7), to moderate (7.1 ± 1.6) to high (7.5 ± 1.2) physical activity groups, in that order, but the differences between these physical activity groups was not statistically significant, $\mathrm{F}(3,27)=$ $1.116, \mathrm{p}=.523$.

Reporting results

One-way ANOVA was statistically significant, variances were equal and a post hoc test was carried out
Without test of assumptions: A one-way ANOVA was conducted to determine if the ability to cope with workplace-related stress (CWWS score) was different for groups with different physical activity levels. Participants were classified into four groups: sedentary ($n=7$), low ($n=9$), moderate $(n=8)$ and high levels of physical activity ($n=7$). Data is presented as mean \pm standard deviation. CWWS score was statistically significantly different between different physical activity groups, $F(3,27)=8.316, p<.0005, \omega 2=$ 0.42 . CWWS score increased from the sedentary (4.2 ± 0.8), to low (5.9 ± 1.7), to moderate (7.1 ± 1.6) to high (7.5 ± 1.2) physical activity groups, in that order. Tukey post hoc analysis revealed that the increase from sedentary to moderate ($2.97,95 \% \mathrm{Cl}(0.99$ to 4.96)) was statistically significant ($p=.002$), as well as the increase from sedentary to high (3.35, $95 \% \mathrm{Cl}(1.30$ to 5.40$), \mathrm{p}=.001$), but no other group differences were statistically significant.

One-way repeated measures ANOVA

Parametric test (equivalent of multiple paired-samples t-test)
Used to determine whether difference between the means of 3 or more levels of a within-subjects factor.

- Participants are the same in the group, tested on 3 or more time durations/scores/treatments on the same dependent variable

Determine if there are changes over time between two related groups

Determine if there are differences betweer two treatments/conditions

Cross-over design

- Exposed to 2 conditions in a different order
- Group 1 - treatment A then B
- Group 2 - treatment B then A

Reduces possible bias associated with the order in which participants are exposed to a particular condition

Examples

1. Effects of duration of therapy on cigarette consumption (dependent variable) on 1 group of 30 smokers. Cigarette consumption is measured and compared at 3 different time points (time is the within-subjects factor): before therapy/0 months, 6 months, 12 months mark

- Determine if there are differences between 3 or more time points

2. Red background vs green background vs blue background on reaction times

- Determine if there are differences between 3 or more conditions/treatments/interventions
- Determine if there are differences between 3 or more change scores

Same group of 30 participants, undergoing 3 or more different interventions
The same dependent variable (blood glucose concentration) is measured pre and post (1) exercise intervention, (2) dietary intervention and (3) no intervention/control

Change in blood glucose concentrations pre and post interventions is calculated, for all 3 interventions, and are compared using one-way repeated measures ANOVA
*Can also use two-way repeated measures ANOVA

Linear regression

Used to assess the linear relationship between 2 continuous variables to predict the value of a dependent variable based on the value of the independent variable. Used to determine:

1. Whether linear regression between the 2 variables is statistically significant
2. How much variation in the dependent variable is explained by/due to the independent variable
3. Direction and magnitude of the relationship
4. Predict values of dependent variables based on different values of independent variables
$Y=\beta 0+\beta 1 X+\varepsilon$, where $\beta 0$ is the intercept/constant, $\beta 1$ is the slope coefficient/gradient, ε is the errors

Examples

1. Predict the distance athletes can run (dependent, continuous variable) in 30 min based on their VO2 max (independent, continuous variable)
2. Predict how much does the amount of time spent exercising explain cholesterol concentration

Assumptions

1. One dependent variable, continuous
2. One independent variable, continuous
3. Linear relationship (approx. straight line on scatterplot) present between dependent and independent variables
4. Independence of observations
5. No significant outliers
6. Variances along the best fit line remain similar throughout (homoscedasticity)
7. The residuals/errors of regression line are approx. normally distributed

Additional steps...

3. Linear relationship?

Visual inspection of scatterplot to determine linear relationship. If not linear,

1. Perform a transformation
2. Run a polynomial regression - where 1 or more independent variables is raised to a power of 2 or more ($Y=\beta 0+\beta 1 X+\varepsilon$ to $Y=\beta 0+\beta 1 X+\beta 2 X 2+\varepsilon$). Possible for curved lines/ U -/inverted- U shaped lines (however, may not fit all types of relationships)
3. Run a nonlinear regression

4. Independence of observations?

If you suspect that the observations could be related, interpret the Durbin-Watson test in "Model Summary" table.

Durbin-Watson test statistic is between 0-4.
A value closer to 2 shows independence of errors (residuals)

5. Any outliers?

To determine outliers, either visually inspect the scatter plot, or perform casewise diagnostics to highlight any cases where the standardised residual > 3SD

If keeping outliers:

1. Transform the dependent variable
2. Include without change, if you believe result will not be affected (e.g. similar after running the linear regression with and without the outlier)

If removing outliers:

Generally considered as last resort. Provide information about the data points removed (e.g. their value and impact on results)

6. Are variances along best fit line remains similar throughout?

Visual inspection of scatterplot to test for homoscedasticity

- regression standardized residuals on y-axis
- regression standardised predicted value on x-axis

If there is homoscedasticity, residuals/errors of prediction will be equal across the standardised predicted/fitted values (e.g. plot will show no pattern, and will be approx. constantly spread)

If there is heteroscedasticity, residuals will not be evenly spread (e.g. increasing funnel, decreasing funnel, fan shaped, etc):

1. Run a weighted least squares regression equation
2. Run a regression with robust standard errors
3. Run a robust regression
4. Transform dependent variable

7. Residuals approx. normally distributed?

Check histogram and/or Normal P-P Plot for normality of regression standardised residuals

To determine how well the model fits:

Percentage/proportion of variance explained (using "Model Summary" table)

- R: refers to multiple correlation coefficient = absolute Pearson correlation coefficient between the 1 dependent and 1 independent variable, measuring the strength of association between the 2 variables (not usually of interest in linear regression analysis)
- R^2: refers to proportion of variation explained by the model in the sample (e.g. 0.129 means that 12.9% of the variance in the dependent variable can be explained by the independent variable)
- Adjusted $\mathrm{R}^{\wedge} 2$: refers an estimate of the proportion of variation explained by the model in the population (corrects for positive bias in the sample, hence would be lower than unadjusted). Adjusted R square is also an estimate of Cohen's effect size

Multiple regression

Checking for multicollinearity - occurs when 2 or more independent variables are highly correlated with each other

+ Check that independent variables have correlations <0.7
+ Check that tolerance value is >0.1 or VIF <10

Statistical significance of the model (refer to "ANOVA" table):

- p<0.05 indicates a statistically significant linear relationship

Interpreting coefficients - B refers to gradient, AKA increase in dependent variable per 1 unit of independent variable.

Predicting dependent variables - the predicted values are the expected and mean values + standard error $+95 \% \mathrm{Cl}$, using general linear model -> univariate.
Note: CI refers to the mean predicted value. SPSS does not produce predicted value for an individual, although it is possible.

Reporting results

A linear regression was run to understand the effect of average daily time spent watching TV on cholesterol concentration. To assess linearity a scatterplot of cholesterol concentration against average daily time spent watching TV with superimposed regression line was plotted. Visual inspection of these two plots indicated a linear relationship between the variables. There was homoscedasticity and normality of the residuals. One participant was one outlier with a cholesterol concentration of 7.98 $\mathrm{mmol} / \mathrm{L}$. They were removed from the analysis due to not representing the target population.

The prediction equation was: cholesterol concentration $=-0.94+0.03697^{*}$ time. Average daily time spent watching TV statistically significantly predicted cholesterol concentration, $F(1,97)=14.39, p<$.0005 , accounting for 12.9% of the variation in cholesterol concentration with adjusted R2 $=12.0 \%$, a medium size effect according to Cohen (1988). An extra minute of daily average time spent watching TV leads to a $0.037(95 \% \mathrm{Cl}, 0.018$ to 0.056$) \mathrm{mmol} / \mathrm{L}$ increase in cholesterol concentration.

+ scatterplot

[^0]: OK Paste Reset Cancel Help

