Introduction to SPSS + Statistical Tests for Quantitative Data

By Research Comm :)

Overview

- 1. Introduction to stats
- 2. Deeper dive into stats
- 3. SPSS functions

Why SPSS

- Easy to learn (just need to know how to click buttons)
- For quick analysis of results
- Relevant calculations required for the test are mostly spoon-fed to us :)
- Intuitive interface

Why not SPSS

- Unable to handle more complex statistical analyses
- \$\$\$:(

. (re)Introduction to stats

Opening a File

When starting SPSS Statistics

Data Setup

Each column represents a variable

Data View

t				data-setup.s	sav [DataSet5] - IBM	SPSS Statistics Data	Editor
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> nal	lyze <u>G</u> raphs	<u>U</u> tilities Add- <u>o</u> ns <u>V</u>	<u>/</u> indow <u>H</u> elp		
				🛛 📭 🗛 🕴	🭕 🖬 🔚 🛆	à 🏥 🖪 🤇	•
4 : gender	2						
	gender	education	age	qu1	qu2	qu3	var
1	Male	School	18	Strongly Agree	Agree	Strongly Agree	
2	Male	College	20	Agree	Neutral	Agree	
3	Male	University	ity 24 Strongly D		Strongly Disagree	Neutral	
4	Female	School	17	Agree	Strongly Disagree	Agree	
5	Female	College	19	Strongly Agree	Strongly Agree	Strongly Agree	
6	Female	University	21	Agree	Neutral	Agree	
7	Male	School	16	Agree	Agree	Neutral	
8	Female	University	23	Neutral	Strongly Disagree	Disagree	
	1						
Data View	Variable View						
							IBM SPSS

Variable View

Each column represents a property of the variable

Each row represents a new variable

ta 🛛						data	-setup.sav [DataSet	t5] - IBM	SPSS Sta	tistics Dat	a Editor	
<u>F</u> ile <u>E</u> o	it	<u>V</u> iew <u>D</u> a										
	😂 🗏 🖨 🖾 🖛 🛥 📓 💺 💷 📭 👬 🌃 🚟 🖧 🎬 🚮 🥯											
		Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
1		gender	Numeric	8	0	Gender of participants	{1, Male}	None	10	薹 Center	💑 Nominal	🚫 None
2		education Numeric 8 0 Education level {1, School} None 10 \arrow Center I Ordinal										
3	age Numeric 8 0 Agre of participants None None 10 \u2223 Center								🔗 Scale	🚫 None		
4		qu1	Numeric	8	0	Question 1	{1, Strongly Agree}	None	14	를 Center	🚮 Ordinal	🚫 None
5		qu2	Numeric	8	0	Question 2	{1, Strongly Agree}	None	14	를 Center	🚮 Ordinal	🚫 None
6		qu3	Numeric	8	0	Question 3	{1, Strongly Agree}	None	14	薹 Center	🚮 Ordinal	🚫 None
7												
8												
		4						·				
Data Viev	w	Variable Vie	ew									
		1									IBM	SPSS Statis

	The w type	TYPE variable's (e.g. nur currency	s data meric, ′)	M cha	WID aximur racters be en	WIDTH ximum no. of acters that can be entered		LABEL Explanatory label for variable		COLUMNS How long each variable name can be (otherwise truncated)			le se				
NAME The name of the variable must start with a letter X characters: /, * or blank space			N o	DECIMAL of decima places	MAL becimal ces VALUES Text label for categorical variables		MISS Dese mise val	SING scribe ssing lues		ALIGN Alignment of data in Data View		ME Va mea	ASURE riable's surement type				
Eile	Edit	/iew Da	ata Transfo	orm	Analyze	Graphs Util	da lities A	ta-se	eiup.sav [Data Window	Set	5] - IE	M SP	SS Stati	stics	Data	Editor	
							4	H				4		1			ABG
		Name	Туре	Wid	th Decir	nals L	abel		Values		Miss	sing (Columns	4	Align	Measure	Role
	1	gender	Numeric	8	0	Gender o	f participa	nts	{1, Male}		None	e 1	10	=	Center	💑 Nomin	al 🚫 None
	2	education	Numeric	8	0	Education	n level		{1, School}		None	e 1	0	=	Center	Ordina	None
	3	age	Numeric	8	0	Agre of p	articipants	6	None		None	e 1	0	=	Center	Scale	⊘ None
	4	qu1	Numeric	8	0	Question	1	-	1, Strongly Agr	ree}.	None	e 1	14	=	Center	Ordina	None
	5	qu2	Numeric	8	0	Open va	riable	-	1, Strongly Agr	ree}.	None	e 1	14	=	Center	Ordina	None
	6	qu3	Numeric	8	0	type dia	logue		1, Strongly Agr	ree}.	None	e 1	4	畫	Center	Ordina	I 🚫 None
	1		1	1		box to s	select				I					1	r I

Value Labels

Entering Continuous Data

						data	-setup.sav [DataSet	t5] - IBM SPS	S Statistics Dat	a Editor	
<u>F</u> ile	Edit	<u>V</u> iew <u>D</u>	<u>)</u> ata <u>T</u> ransf	orm <u>A</u>	nalyze <u>G</u>	raphs <u>U</u> tilities Add-	ons <u>W</u> indow <u>H</u> el	p			
				2		! = ! /	h 📰 🔛				ABC
		Name	Туре	Width	Decimals	Label	Values	Missing Col	umns Align	Measure	Role
1	1	gender	Numeric	8	0	Gender of participants	{1, Male}	None 10	를 Center	💑 Nominal	🚫 None
2	2	education	Numeric	8	0	Education level	{1, School}	None 10	Center	Ordinal	🛇 None
3	3	age	Numeric	8	0	Agre of participants	None	None 10	를 Center	🖋 Scale	🛇 None
4	1	qu1	Numeric	8	0	Question 1	{1, Strongly Agree}	None 14	를 Center	Ordinal	🛇 None
ł	5	qu2	Numeric	8	0	Question 2	{1, Strongly Agree}	None 14	를 Center	📶 Ordinal	🚫 None
(6	qu3	Numeric	8	0	Question 3	{1, Strongly Agree}	None 14	壹 Center	📶 Ordinal	🚫 None
1	7										
8	3										
	1	4		_							
Data	View	Variable Vi	iew								
										IBM	SPSS Statis

Entering Categorical Data

t						data	-setup.sav [DataSe	t5] - IBM	SPSS Sta	tistics Dat	a Editor	
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u>	ata <u>T</u> ransf	orm <u>A</u>	nalyze <u>G</u>	raphs <u>U</u> tilities Add-	ons <u>W</u> indow <u>H</u> el	р				
			II. 🗠			! = ! /	h 💹 🔛		2			ABC
		Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
1		gender	Numeric	8	0	Gender of participants	{1, Male}	None	10	Center	🙈 Nominal	🛇 None
2	2	education	Numeric	8	0	Education level	{1, School}	None	10	薹 Center	📶 Ordinal	🛇 None
3	}	age	Numeric	8	0	Agre of participants	None	None	10	薹 Center	🖋 Scale	🛇 None
4	ŀ	qu1	Numeric	8	0	Question 1	{1, Strongly Agree}	None	14	薹 Center	📶 Ordinal	🚫 None
5	;	qu2	Numeric	8	0	Question 2	{1, Strongly Agree}	None	14	薹 Center	📶 Ordinal	🚫 None
6	6	qu3	Numeric	8	0	Question 3	{1, Strongly Agree}	None	14	薹 Center	📶 Ordinal	🚫 None
7	7											
8	}											
		1									-	<u> </u>
Data	View	Variable Vi	ew									
											IBM	SPSS Statis

Entering Categorical Data – Data View

t				da	ata-setup.sa				
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> naly	yze <u>G</u> raphs	<u>U</u> tilities A	dd- <u>o</u> ns <u>W</u> i				
				۲ ۲	#1		Clie	ck "Value La	bels" on the
3 : education	3						r	nain toolbar	to display
	gender	education	age	q	u1			underlying	codes
1	Male	School	18	Strongl	y Agree				
2	Male	College	t		T		data catura	DataSat51 IPM	SDSS Statistics Data E
3	Male	University 🔻	Eile Edit	View Data	Transform Ana	lyze Granhs	Litilities Add-one V	Vindow Help	
4	Female	School							
5	Female	College						S 😫 📰 🗠	🌢 🛄 🛛 🖣 🔍
6	Female	University	18 : gender				ir.)[]	If
7	Male	School	1	gender 1	education 1	age 18	qu1	qu2	qu3
8	Female	University	2	1	2	20	2	3	2
,	·		3	1	3	24	5	5	3
			4	2	1	17	2	5	2
			5	2	2	19	1	1	1
			6	2	3	21	2	3	2
			8	2	3	23	3	5	3

2. Intro to Stats

- Population vs Sample
- Descriptive vs Inferential Statistics
- Experimental design

What is Statistics?

Statistics is the study of how to collect, organise, analyse, and interpret numerical information and data

We measure variables from individuals

Eg. measuring CrCl in CKD patients

Population vs Sample

Population Data	Sample Data
A group of people or objects with a common theme; when every member of that group is considered, it is a population	Small proportion of the population
Census	Sample
Expensive	Cheaper
Time-Consuming	More efficient

Population vs Sample

Parameters: Measure that describes the entire population

Statistic: A measure that describes only a sample of a population

Descriptive vs Inferential Statistics

Descriptive Statistics (for both samples and populations): Involve methods of organizing, picturing, and summarizing information from samples AND populations

Inferential Statistics (for samples ONLY): Involves methods of using information from a sample to draw conclusions regarding the populations (HYPOTHESIS TESTING)

THIS FORMS THE BASIS OF ALL THAT WE DO IN STATISTICS

- 1. State a hypothesis
- 2. Identify the individuals/population of interest
- 3. Specify the variables to measure
- 4. Collect data from your sample
- 5. Use descriptive or inferential statistics to answer your hypothesis

Categorical vs Continuous

• You just need to be familiar with these 3 options for SPSS :D

EXAMPLE:

Hypothesis: Air pollution causes asthma in children who live in urban settings

Individuals/Population: Children in urban settings

Variables: Degree of air pollution (PSI?), Child is diagnosed with asthma

Once we collect data for this study, we want to

a) compute descriptive statistics to describe

- 1. Associations & Correlations between variables
- 2. Prediction & Relationships
- 3. Group Differences

b) compute inferential statistics (aka hypothesis testing) to determine if the statistics in our sample can be generalised to the general population as population parameters

The tests that we select are based on

a) The study design itself (especially the type of variables involved)

a) The data collected

3. More on stats

- Data normally distributed?
- Any outliers?
- Assumptions met for the specific test?**
- Reporting results

To first get an overview of your data...

- Menu bar -> Analyze -> Descriptive Statistics -> Explore...
- Input "Dependent List" and "Factor List"
 - Factor list e.g. can be used to separate "age" according to "male vs female"
- Select everything else you want to find out in the options buttons at the side

Output:

- Summary
- Descriptives
- Outliers
- Histograms
- *Checking for normality (look for table with Shapiro-Wilk)

Normality Tests

	Numerical Method	Graphical Method
Tests	Skewness and Kurtosis values Shapiro-Wilk test	Normal Q-Q Plot Histogram
Advantages	Objective judgment of normality	Using individual's own judgment to assess normality
Disadvantages	Not sensitive enough at low sample sizes (i.e. not detecting violations of normality) Overly sensitive to large sample sizes (i.e. very small deviations from normality are detected)	Lack of objectivity

Skewness and Kurtosis

Shapiro-Wilk

HO: Data assumes normal distribution

If p < 0.05 -> Reject H0 that data is normally distributed -> AKA Age is not normally distributed in this case

		Kolm	ogorov–Smi	Shapiro-Wilk				
	Gender	Statistic	df	Statistic	df	Sig.		
Age	Female	.205	37	<.001	.816	37	<.001	
	Male	.125	.907	63	<.001			
a. Li	lliefors Sign	ificance Cor	rection					

Tests of Normality

Histogram and Q-Q Plots

Histogram

- Look for classic bell-curve shape
- Width of columns (bins) would also affect the shape

Q-Q Plots

- Data is normally distributed if it is positioned along the diagonal line

Transforming Data

Performing Transformations

ta							inde
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	Add- <u>o</u> ns	<u>W</u> indow
		Compu	ute Variabl	e	G	3	1
-		Shift Va	values witi alues	hin Cases.			
	gender	Recod	e into Sam	e Variable	S	var	Va
1	Mal	e I Bocod	a into Diffa	ront Variak			
2	Mal	e Recou	e into Dille	reni vana.	Jes		
3	Mal	e 🔯 <u>A</u> utoma	atic Recod	e			
4	Mal	e 📴 Visual	<u>B</u> inning				
5	Mal	e 🛃 Ran <u>k</u> C	Cases				
6	Mal	e 🛗 Date a	nd Time W	izard			
7	Mal	e 🔤 Create	Time Seri	es			
8	Mal	e	Missing	Values			
9	Mal	e 🐨 – e e	e wissing	values			
10	Mal	e 👹 Rando	m Number	r <u>G</u> enerato	rs		
11	Mal	e 🛛 🐻 Run Pe	ending <u>T</u> ra	nsforms	Ctrl+	·G	
12	Mal	e	6.01				
13	Mal	<u>م</u>	5 20				

Give a name to the new variable that will be created when you apply a transformation to an existing variable (e.g., you might call it "engagement_log10" if you want to apply a log10 transformation to the "engagement" variable).

Moderately, positively skewed data

	ta -	Compute Variable ×	
	Target Variable: engagement_sqrt Type & Label gender regagement	Numeric Expression: SQRT(engagement) + > 7 8 9 + > 7 8 9 - <= 4 5 6 * = = 1 2 3	Type: SQRT(variable)
Apply squ transfori	are root mation	/ & I 0 . Date Creation T ** ~ () Delete Functions and Special Variables: SQRT(numexpr). Numeric. Returns the positive square root of numexpr, which must be numeric and not negative. Mod Rnd(1) Rnd(2) Rnd(3) Sin Sin Sqrt Sin Sin Sin	
	(optional case select	on condition) Trunc(1) Trunc(2) Trunc(3) OK Paste Reset Cancel Help	

Moderately, negatively skewed data

1	Compute Variable ×	
Target Variable: engagement_sqrt_ref Type & Label	Num <u>e</u> ric Expression: = SQRT(8.23 - engagement)	Type: SQRT(# - <i>variable</i>)
Apply reflect and square root transformation	+ > 7 8 9 - All + < 7 8 9 - CDF & Noncentral CDF - <= >= 4 5 6 CDF & Noncentral CDF <= <= 1 2 3 Current Date/Time Date Arithmetic Date Arithmetic Date Creation T	
 Find the largest dependent variable value Add 1 to its value Each dependent value has to be subtracted from the value in (2) 	** ~ () Delete Functions and Special Variables: SQRT(numexpr). Numeric. Returns the positive square root of numexpr, which must be numeric and not negative. In In Mod Rnd(1) Rnd(2) Rnd(3) Sin Sqrt Trunc(1) Trunc(2) Trunc(2) OK Paste Reset Cancel	
4. Take the square root	OK Paste Reset Cancel Help	

Strongly, positively skewed data

	ta .	Compute Variable	
	Target Variable: engagement_sqrt Type & Label gender engagement	Numeric Expression: = SQRT(engagement) + > + > - = 4 5 - = 4 5 - = 1 2 3 = - = 1 2	Type: LG10(variable)
Apply loga transfori	arithmic mation	Image: Construction Image: Construction Image: Constretion Image: Constretion	
	(optional case select	on condition) OK Paste Reset Cancel Help OK	

Strongly, negatively skewed data

	t a	Compute Variable	
	Target Variable: engagement_sqrt_ref Type & Label	Num <u>e</u> ric Expression: = SQRT(8.23 - engagement)	Type: LOG10(# - <i>variable</i>)
Apply re logari transfo	flect and ithmic rmation	+ > 7 8 9 + > 7 8 9 - <= >= 4 5 6 * = <= 1 2 3 / & 1 0 . .	
 Find the depende value Add 1 to Each dep has to be from the Take the 	largest nt variable its value endent value subtracted value in (2) logarithm	** ~ () Delete Functions and Special Variables SQRT(numexpr). Numeric. Returns the positive square root of numexpr, which must be numeric and not negative. In Ingamma Mod Rnd(1) Rnd(2) Rnd(3) Sin Sqrt Trunc(1) Trunc(2) Trunc(2) Trunc(3) Trunc(3)	

Extremely, positively skewed data

	ta	Compute Variable	
			Type: 1 /variable
	<u>T</u> arget Variable:	Numeric Expression:	
	engagement_sqrt	= SQRT(engagement)	
	Type & <u>L</u> abel		
	🗞 gender	₩	
	<pre>engagement</pre>	Function group:	
		Arithmetic	
		- <= >= 4 5 6 CDF & Noncentral CDF	
		/ & O . Date Creation	
Δηη		+++ Functions and Special Variables:	
App	71 Y		
• /	•	SORT(numeror) Numeric Returns the positive square rest	
Inverse/re	eciproca	of numexpr, which must be numeric and not negative.	
		Rnd(1) Rnd(2)	
transfor	mation	Rnd(3)	
	Πατισπ	Sin	
		Sqrt	
		Trunc(1)	
	(optional case selec	tion condition)	
		OK Paste Reset Cancel Help	

Extremely, negatively skewed data

	t a	Compute Variable ×	
	Target Variable: engagement_sqrt_ref Type & Label	Num <u>e</u> ric Expression: = SQRT(8.23 - engagement)	Type: 1/(# - <i>variable</i>)
App inve I tra	ly reflect and rse/reciproca nsformation	★ ★ < > 7 8 9 - <= >= 4 5 6 ★ = ~= 1 2 3 7 8 1 0 . Function group: All All Arithmetic CDF & Noncentral CDF Conversion Current Date/Time Date Arithmetic Date Creation T =	
 Finder Va <	nd the largest ependent variable alue dd 1 to its value ach dependent value as to be subtracted om the value in (2) ake the inverse	Image: Superior of numexpr). Numeric. Returns the positive square root of numexpr, which must be numeric and not negative. Functions and Special Variables: SQRT(numexpr). Numeric. Returns the positive square root of numexpr, which must be numeric and not negative. Mod Rnd(1) Rnd(2) Rnd(3) Sin Sqrt Trunc(1) Trunc(2) Trunc(2) OK Paste Cancel	

Data Transformation

Positively Skewed	Negatively Skewed
Square Root	Reflect & Square Root
Log	Reflect & Log
Inverse/Reciprocal	Reflect & Inverse/Reciprocal

Outliers * Extreme outliers: > 3.0 x IQR below Q1 or above Q3 70 61 * 2 60 0⁷⁶ 50 Age 40 30 20 Female Male Gender

o Mild outliers: > 1.5 x IQR *below* Q1 or *above* Q3

Statistics Final Exam Score

Dealing with outliers

If keeping outliers:

1. Run **non-parametric** test instead

2. Modify by **replacing with a less extreme value** (e.g. next largest value)

3. **Transform** the dependent variable

4. **Include without change**, if you believe result will not be affected

(e.g. similar after running the test with and without the outlier)

Dealing with outliers

If removing outliers:

- Generally considered as last resort.
 - In your paper: Provide information about the data points removed (e.g. their value and impact on results)

<u>Acceptable in the following example:</u> To investigate the effect of exercise on young males. One participant's cholesterol concentration was particularly high (outlier), indicating considerable risk of heart disease. If the study initially wanted only healthy individuals, and exclude those with risk of heart diseases, then the data can be removed.

Why is testing for normality important?

Data Setup	Parametric test	Non-Parametric test
1 Variable 2 Categories Between Subjects	independent t-test	Mann-Whitney U test
1 Variable 2 Categories Within-Subjects	paired t-test	Wilcoxon Signed Rank Test
1 Variable >2 Categories Between Subjects	One-way ANOVA	Kruskal Wallis Test
1 Variable >2 Categories Within Subjects	repeated measures ANOVA	Friedman test Mood's median test
1 Variable (Correlation)	Pearson's r	Spearman's ρ (rho)

After selecting the appropriate tests...

- Pearson's correlation
- Independent t-test
- Mann-Whitney U test (non-parametric independent t-test)
- (One-way) ANOVA
- One-way repeated measures ANOVA (multiple paired-samples t-test)
- Linear regression

https://tinyurl.com/spsslkc

Pearson's correlation

Used to determine the strength and direction of a <u>linear relationship</u> between <u>2 continuous variables</u>

Pearson correlation coefficient, r:

-1 (perfect negative linear relationship)+1 (perfect positive linear relationship)0 (no relationship)

Examples

1. To determine whether there is an association between <u>exam performance</u> and <u>time spent revising</u>

2. To determine whether there is a relationship between <u>"amount of cigarettes</u> <u>reduced"</u> and <u>"withdrawal pain"</u> in participants who failed to quit smoking after 6 months hypnotherapy intervention

Analyze -> Correlate -> Bivariate

Correlation Coefficients

🗸 Pearson 🗌 Kendall's tau-b 🗌 Spearman

Power Analysis Meta Analysis Reports Descriptive Statistics Bayesian Statistics Tables Compare Means and Proportions General Linear Model General Linear Models Mixed Models Correlate Regression Loglinear Neural Networks Classify Dimension Reduction Survival Multiple Response	Analyze	Graphs	Utilities	Extensions	Window	Help	
Meta Analysis Reports Reports Descriptive Statistics Bayesian Statistics Tables Compare Means and Proportions General Linear Model Generalized Linear Models Mixed Models Correlate Regression Loglinear Neural Networks Classify Dimension Reduction Survival Multiple Response	Power An	alysis		>	📴 pears	on-correlatior	n.sav [DataS
Reports > Descriptive Statistics > Bayesian Statistics > Tables > Compare Means and Proportions > General Linear Model > Generalized Linear Models > Mixed Models > Correlate > Regression > Loglinear > Neural Networks > Classify > Dimension Reduction > Survival > Multiple Response >	Meta Ana	llysis		>	Q pears		
Descriptive Statistics > Bayesian Statistics > Tables > Compare Means and Proportions > General Linear Model > Generalized Linear Models > Mixed Models > Correlate > Regression > Loglinear > Neural Networks > Classify > Dimension Reduction > Survival > Multiple Response >	Reports			>			
Bayesian Statistics > Tables > Compare Means and Proportions > General Linear Model > Generalized Linear Models > Mixed Models > Mixed Models > Correlate > Regression > Loglinear > Neural Networks > Classify > Dimension Reduction > Carsets > Survival > Multiple Response >	Descripti	ve Statistic	s	>			
Tables > I Val Va	Bayesian	Statistics		>	Var	Var	Var
Compare Means and Proportions General Linear Model Generalized Linear Models Mixed Models Mixed Models Correlate Regression Loglinear Neural Networks Classify Dimension Reduction Canonical Correlation Survival Multiple Response	Tables			>	VdI	VdLI	Vd.I
General Linear Model Generalized Linear Models Mixed Models Correlate Regression Loglinear Neural Networks Classify Dimension Reduction Canonical Correlation Survival Multiple Response	Compare	Means and	Proportion	s >			
Generalized Linear Models Mixed Models Correlate Regression Loglinear Neural Networks Classify Dimension Reduction Canonical Correlation Canonical Correlation Survival Multiple Response	General L	inear Mode	el	>			
Mixed Models Correlate Regression Loglinear Neural Networks Classify Dimension Reduction Cirests Survival Multiple Response	Generaliz	ed Linear N	/lodels	>			
Correlate > Regression > Loglinear > Neural Networks > Classify > Dimension Reduction > Canonical Correlation Canonical Correlation Survival > Multiple Response >	Mixed Mo	odels		>			
Regression > Loglinear > Neural Networks > Classify > Dimension Reduction - Canonical Correlation Canonical Correlation Canonical Correlation Canonical Correlation Survival Multiple Response	Correlate			> 🕂	Bivariate wi	ith Confidence	Intervals
Loglinear > Neural Networks > Classify > Dimension Reduction - Canonical Correlation Canonical Correlation Canonical Correlation Canonical Correlation Canonical Correlation Canonical Correlation Survival Multiple Response	Regressio	on		> 🚹	Bivariate		
Neural Networks > Classify > Dimension Reduction - Canonical Correlation Comparison Reduction Comparison Reduction Comparison Reduction Comparison Reduction Survival Survival Multiple Response	Loglinear			> 🌆	Partial		
Classify > Canonical Correlation Dimension Reduction > Canonical Correlation C Tests > C Tests	Neural Ne	etworks		> 8	Distances		
Dimension Reduction > C Tests > Survival > Multiple Response >	Classify			> 🛨	Canonical (Correlation	
C Tests > Survival > Multiple Response >	Dimensio	n Reductio	n	>			
C Tests > Survival > Multiple Response >	<u> </u>	_		>			
Survival >		c Test	s	>			
Survival >				>			
Multiple Response >	Survival			>			
	Multiple F	Response		>			

Exclude cases pairwise: Any missing value or variable will only affect the analyses involving that variable

Exclude cases listwise: Any missing value or variable will affect all analyses involving that subject

Assumptions

1. Both variables are continuous (e.g. interval or ratio)

2. Both variables should be paired, each participant has 2 values: 1 for each

variable (e.g. a student has 2 variables: revision time and exam performance)

3. Linear relationship between the 2 continuous variables

4. No significant outliers

5. Bivariate normality

Checking for linear relationship

Graphs -> Chart builder -> Scatter/Dot (drag and drop) -> Select x- and y-axis (drag and drop) -> Edit properties of axes under "Element Properties" -> Set 0 as minimum

If not linear?

1. Determine whether monotonic or non-monotonic relationship

2. If monotonic -> Go to **Spearman's rank-order correlation** OR try to **transform data** into linear relationship if ur a pro...

3. If non-monotonic -> may need to transform one or more variables to get a monotonic relationship

Interpreting results

Coefficient value	Strength of association
0.1 < r < .3	Small correlation
0.3 < r < .5	Medium/moderate correlation
<i>r</i> >.5	Large/strong correlation

Table: Column meanings for the "Correlations" table.

		time_tv	cholesterol
time_tv	Pearson Correlation	1	.371
	Sig. (2-tailed)		.000
	Ν	100	100
cholesterol	Pearson Correlation	.371	1
	Sig. (2-tailed)	.000	
	N	100	100

Correlations

Coefficient of determination

**. Correlation is significant at the 0.01 level (2-tailed).

= square of correlation coefficient (r^2)

- Proportion of variance in one variable that is "explained" by the other variable

-> e.g. If $r^2=0.14$, then daily time spent watching TV statistically explained 14% of the variability in cholesterol concentration

Correlations

		time_tv	cholesterol
time_tv	Pearson Correlation	1	.371
	Sig. (2-tailed)		.000
	Ν	100	100
cholesterol	Pearson Correlation	.371	1
	Sig. (2-tailed)	.000	
	N	100	100

Note: Statistical significance here does not determine the strength of the relationship

**. Correlation is significant at the 0.01 level (2-tailed).

*In SPSS, p-value = .000 refers to p < 0.0005

Typically reported as p < 0.001

For p-values > 0.001, do write the actual values, rather than < 0.05

Reporting results

Statistically significant:

A Pearson's product-moment correlation was run to assess the relationship between cholesterol concentration and daily time spent watching TV in males aged 45 to 65 years. One hundred participants were recruited.

Preliminary analyses showed the <u>relationship to be linear</u> with both variables <u>normally</u> <u>distributed</u>, as assessed by Shapiro-Wilk's test (p > .05), and there were <u>no outliers</u>.

There was a <u>statistically significant</u>, <u>moderate positive correlation</u> between daily time spent watching TV and cholesterol concentration, r(98) = .37, p < .0005, with time spent watching TV explaining 14% of the variation in cholesterol concentration.

Reporting results

Not statistically significant:

A Pearson's product-moment correlation was run to assess the relationship between cholesterol concentration and daily time spent watching TV in males aged 45 to 65 years. One hundred participants were recruited.

Preliminary analyses showed the <u>relationship to be linear</u> with both variables <u>normally</u> <u>distributed</u>, as assessed by Shapiro-Wilk's test (p > .05), and there were <u>no outliers</u>.

There was a <u>no statistically significant</u> correlation between daily time spent watching TV and cholesterol concentration, r(98) = .28, p = .765, with time spent watching TV explaining 9% of the variation in cholesterol concentration.

Table 1

Pearson correlations for main study variables

	Time watching TV	Cholesterol	CRP
Cholesterol	.371*		
CRP	.341*	.886*	
TAG	.312*	.858*	.981*

Note. CRP = C-Reactive Protein, TAG = Triglyceride, * = statistically significant at p < .05 level.

Independent samples t-test

Parametric test used to determine whether <u>difference between 2</u> <u>independent groups</u> is significant

Examples

1. Whether there is a statistically significant difference in <u>salary</u> (dependent variable) between <u>"under 30y/o"</u> and "above 30y/o" groups

- Differences between 2 independent groups

2. Whether there is a statistically significant difference in the <u>body fat in mm</u> (dependent variable) between the 2 groups split according to level of <u>physical</u> <u>activity</u> (independent variable) ('none', 'frequent' exercise)

- Differences between interventions

3. Whether the difference in <u>change in blood glucose</u> concentration for each group was significant in <u>dietary group and control group</u> at the end of the 6 week period (can also look at two-way mixed ANOVA or one-way ANCOVA) - Differences in change post intervention

Assumptions

- 1. One dependent variable, continuous or ordinal
- 2. One independent variable, consisting of 2 categorical, independent groups
- 3. Independence of observations (e.g. same participant cannot be in more than 1 group, otherwise look at **paired-samples t-test**)
- 4. No significant outliers (dependent variables) within the groups of independent variables
- 5. Dependent variable approx. normally distributed for each group of independent variable
- 6. <u>Homogeneity of variances</u> of dependent variables in each group of independent variable

Explore...

	Analyze Graphs	Utilities	Extension	าร	Window	Help				
(Power Analysis			6	independe	ent-samp	les-t-test.sa	a		
č	Meta Analysis Reports Descriptive Statistics Bayesian Statistics Tables			Q Search application						
				> Erequencies						
				Head Descriptives						
				Population Descriptives						
	Compare Means and Proportions		s >	â,	Explore					
	General Linear Model Generalized Linear Models		>	 Crosstabs TURF Analysis Ratio 						
			>							
	Mixed Models	>								
	Correlate	>	Proportion Confidence Intervals							
	Regression		>	P-P Plots						
	Loglinear		>	🛃 Q-Q Plots						
	Neural Networks		>					-		
	Classify		>					1		
	Dimension Reduction		>					1		
	Scale		>					-		
	Nonparametric Tests		>					-		
	Forecasting		> -					-		
	Survival		> -					-		
-	Multiple Response		> -					-		
	💕 Missing Value Ana	alysis	-					-		
	Multiple Imputation		>							
-	Complex Samples		>					-		
-	🖶 Simulation									

o Mild outliers: > 1.5 x IQR below Q1 or above Q3

* **Extreme outliers**: > 3.0 x IQR *below* Q1 or *above* Q3

Managing outliers

If keeping outliers:

1. Run <u>non-parametric Mann-Whitney U test</u> instead

2. Modify by replacing with a less extreme value (e.g. next largest value, meaning 2nd largest value = 5.55, the altered value of outlier = 5.56)
3. Transform the dependent variable

4. Include without change, if you believe result will not be affected (e.g. similar after running the test with and without the outlier)

If removing outliers:

Generally considered as <u>last resort</u>. Provide information about the data points removed (e.g. their value and impact on results)

Acceptable in the following example: To investigate the effect of exercise on young males. One participant's cholesterol concentration was particularly high (outlier), indicating considerable risk of heart disease. If the study initially wanted only healthy individuals, and exclude those with risk of heart diseases, then the data can be removed.
Strength Effect Size .2 small .5 medium .8 large Table 4.3: Cohen's d.

		Independent Samples Effect Sizes					
					95% Confidence Interval		
			Standardizer ^a	Point Estimate	Lower	Upper	
	Engagement with TV advert	Cohen's d	.34638	.748	.101	1.385	
		Hedges' correction	n .35341	.733	.099	1.358	
		Glass's delta	.39339	.658	003	1.304	
	a The denominator use	d in actimating the a	ffact sizes				

a. The denominator used in estimating the effect sizes. Cohen's d uses the pooled standard deviation.

Hedges' correction uses the pooled standard deviation, plus a correction factor.

Glass's delta uses the sample standard deviation of the control group.

Effect size (Cohen, 1988)

* Journals are increasingly asking for effect sizes to be reported whenever possible :/

Statistical significance vs Effect size

Statistical significance: Only tells us whether there is a difference (whether an effect exists)

- **DOES NOT** tell us whether the difference is <u>big</u>, <u>important or helpful</u> in decision making
- If sample is sufficiently large, a stat test will almost always give significant difference
 - E.g. increase in score by 1 point out of 100 points can also be significant...

Effect size: Tells us the magnitude of difference between groups

Statistical significance vs Clinical significance

E.g. Increased knee flexion angles in knee osteoarthritis

- MDC_90 value for knee flexion contracture: <u>+6 degrees flexion</u> (stratford)
- If results from gait analysis shows <u>statistically significant</u> difference of <u>less than</u>
 <u>6 degrees</u> of additional flexion -> Are these results <u>clinically relevant</u>?

Mann-Whitney U Test

Non-parametric test (equivalent of independent-samples t-test)

- Can be used when results that require independent-samples t-test do not follow normal distribution (from Shapiro-Wilk test), or have some outliers

Examples

1. Knee OA group vs Healthy group - comparing KOOS scores (0-100) or pain scores. Healthy group will likely have little to no knee pain and normal knee function. Knee OA group will likely have more pain, and poorer knee function, but these scores generally will not follow a normal distribution if sample sizes are not large enough

2. Working group vs Retired group - comparing stress levels (strongly agree, agree, neutral, disagree, strongly disagree).

Assumptions

1. One dependent variable, continuous or ordinal

2. One independent variable, consisting of 2 categorical, independent groups (e.g. male and female, employed and unemployed, intervention and control, bus and car)

3. Independence of observations (e.g. same participant cannot take both bus and car), otherwise go to Wilcoxon signed-rank test

4. Look at whether **distribution** of scores for each group of independent variable have **same shape or different shape/variability**

Additional steps...

Upon visual inspection of histogram,

If shape of both groups have the same shape -> Test can compare medians

If shape of both groups do not have same shape -> Test can compare mean ranks

Independent-Samples Mann-Whitney U Test

Reporting results

For medians,

A Mann-Whitney U test was run to determine if there were differences in engagement score between males and females. <u>Distributions</u> of the engagement scores for males and females were similar, as <u>assessed by visual inspection</u>. **Median** engagement score for males (5.58) and females (5.38) was not statistically significantly different, U = 145, z = -1.488, p = .142, using an exact sampling distribution for U (Dineen & Blakesley, 1973).

For ranks,

A Mann-Whitney U test was run to determine if there were differences in engagement score between males and females. **Distributions of the engagement scores for males and females** were not similar, as assessed by visual inspection. Engagement scores for males (mean rank = 23.25) were statistically significantly higher than for females (mean rank = 17.75), U = 218, z = - 3.422, p = .001, using an exact sampling distribution for U (Dineen & Blakesley, 1973).

One-way ANOVA

Parametric test (equivalent of **multiple independent-samples t-test**) used to determine whether difference between **3 or more independent groups**

*Running multiple t-tests instead would increase Type I error rate. One-way ANOVA would control for the Type I error rate.

Examples

1. Whether there is a statistically significant difference in the body fat in mm (dependent variable) between the 3 groups split according to level of physical activity (independent variable) ('none', 'moderate', 'frequent' exercise)

2. Whether there is a difference in bone density (dependent variable) between the 3 groups split according to frequency of smoking (independent variable) (non-smoker, occasional, frequent)

Examples

3. Whether there is a difference in VO2max (dependent variable) between swimmers, runners and cyclists

4. Whether there is a difference in smoking cessation (dependent variable) based on treatment type (1 group with nicotine patches, 1 group with hypnotherapy, 1 group with moral support)

Assumptions

- 1. One dependent variable, continuous or ordinal
- 2. One independent variable, consisting of 2 (typically 3) or more categorical, independent groups
- 3. Independence of observations (e.g. same participant cannot be in more than 1 group)
- 4. No significant outliers (dependent variables) within the groups of independent variables
- 5. Dependent variable approx. normally distributed for each group of independent variable
- 6. Homogeneity of variances of dependent variables in each group of independent variable

- Analyze -> Compare means -> One-way ANOVA
- Options -> descriptive, homogeneity of variance test, Welch, means plot
- Post-hoc -> Tukey (homogeneity of variances not violated) + Games-Howell (homogeneity of variances violated)

Assumption of homogeneity of variances in a population: Levene's Test for Equality of Variances

- If population variance of both groups is equal, p > 0.05, meeting the assumption of homogeneity of variances

- If population variance of both groups is not equal, p < 0.05, violating the assumption of homogeneity of variances

When homogeneity of variances is met:

- Refer to ANOVA table for results -> Tells us whether difference exists between any of the groups

<u>Tukey post hoc test</u>: To test all possible group comparisons -> Tells us exactly which groups are different

- Can also use Bonferonni

When homogeneity of variances is violated:

- Refer to "Robust Tests of Equality of Means" table for results of Welch's ANOVA

<u>Games-Howell hoc test:</u> To test all possible group comparisons -> Tells us exactly which groups are different

Effect size: omega squared (ω 2) or partial eta squared (η 2)

Reporting results

One-way ANOVA not statistically significant, but variances were equal: With test of assumptions: A one-way ANOVA was conducted to determine if the ability to cope with workplace-related stress (CWWS score) was different for groups with different physical activity levels. Participants were classified into four groups: sedentary (n = 7), low (n = 9), moderate (n = 8) and high levels of physical activity (n = 7). There were no outliers, as assessed by boxplot; data was normally distributed for each group, as assessed by Shapiro-Wilk test (p > .05); and there was homogeneity of variances, as assessed by Levene's test of homogeneity of variances (p = .120). Data is presented as mean \pm standard deviation. CWWS score increased from the sedentary (4.2 ± 0.8) , to low (5.9 ± 1.7) , to moderate (7.1 ± 1.6) to high (7.5 ± 1.2) physical activity groups, in that order, but the differences between these physical activity groups was not statistically significant, F(3, 27) =1.116, p = .523.

Reporting results

One-way ANOVA was statistically significant, variances were equal and a post hoc test was carried out

Without test of assumptions: A one-way ANOVA was conducted to determine if the ability to cope with workplace-related stress (CWWS score) was different for groups with different physical activity levels. Participants were classified into four groups: sedentary (n = 7), low (n = 9), moderate (n = 8) and high levels of physical activity (n = 7). Data is presented as mean ± standard deviation. CWWS score was statistically significantly different between different physical activity groups, F(3, 27) = 8.316, p < .0005, $\omega 2 =$ 0.42. CWWS score increased from the sedentary (4.2 ± 0.8) , to low (5.9 ± 1.7) , to moderate (7.1 ± 1.6) to high (7.5 ± 1.2) physical activity groups, in that order. Tukey post hoc analysis revealed that the increase from sedentary to moderate (2.97, 95% CI (0.99 to (4.96)) was statistically significant (p = .002), as well as the increase from sedentary to high (3.35, 95% Cl (1.30 to 5.40), p = .001), but no other group differences were statistically significant.

One-way repeated measures ANOVA

Parametric test (equivalent of multiple **paired-samples t-test**)

Used to determine whether difference between the means of 3 or more levels of a within-subjects factor.

- Participants are the same in the group, tested on 3 or more time durations/scores/treatments on the same dependent variable

Cross-over design

- Exposed to 2 conditions in a different order
 - Group 1 treatment A then B
 - Group 2 treatment B then A

Reduces possible bias associated with the order in which participants are exposed to a particular condition

Examples

1. Effects of <u>duration of therapy</u> on <u>cigarette consumption</u> (dependent variable) on 1 group of 30 smokers. Cigarette consumption is measured and compared at 3 different time points (time is the within-subjects factor): before therapy/0 months, 6 months, 12 months mark

- Determine if there are differences between 3 or more <u>time points</u>

2. Red background vs green background vs blue background on reaction times

- Determine if there are differences between 3 or more <u>conditions/treatments/interventions</u> - Determine if there are differences between 3 or more change scores

Same group of 30 participants, undergoing 3 or more different interventions

The same dependent variable (blood glucose concentration) is measured pre and post (1) exercise intervention, (2) dietary intervention and (3) no intervention/control

<u>Change in blood glucose concentrations</u> pre and post interventions is calculated, for all 3 interventions, and are compared using **one-way** repeated measures ANOVA

*Can also use **two-way** repeated measures ANOVA

Linear regression

Used to assess the linear relationship between 2 continuous variables to predict the value of a dependent variable based on the value of the independent variable. Used to determine:
1. Whether linear regression between the 2 variables is statistically significant
2. How much variation in the dependent variable is explained by/due to the independent variable
3. Direction and magnitude of the relationship

4. Predict values of dependent variables based on different values of independent variables

Y = β 0 + β 1X + ϵ , where β 0 is the intercept/constant, β 1 is the slope coefficient/gradient, ϵ is the errors

Examples

1. Predict the distance athletes can run (dependent, continuous variable) in 30 min based on their VO2 max (independent, continuous variable)

2. Predict how much does the amount of time spent exercising explain cholesterol concentration

Assumptions

- 1. One dependent variable, continuous
- 2. One independent variable, continuous
- 3. Linear relationship (approx. straight line on scatterplot) present between dependent and independent variables
- 4. Independence of observations
- 5. No significant outliers
- 6. Variances along the best fit line remain similar throughout

(homoscedasticity)

7. The residuals/errors of regression line are approx. normally distributed

Additional steps...

3. Linear relationship?

Visual inspection of scatterplot to determine linear relationship. If not linear,

1. Perform a transformation

2. Run a polynomial regression - where 1 or more independent variables is raised to a power of 2 or more (Y = β 0 + β 1X + ϵ to Y = β 0 + β 1X + β 2X2 + ϵ). Possible for curved lines/U-/inverted-U shaped lines (however, may not fit all types of relationships)

3. Run a nonlinear regression

4. Independence of observations?

If you suspect that the observations could be related, interpret the Durbin-Watson test in "Model Summary" table.

Durbin-Watson test statistic is between 0-4. A value closer to 2 shows independence of errors (residuals)

5. Any outliers?

To determine outliers, either visually inspect the scatter plot, or perform casewise diagnostics to highlight any cases where the standardised residual > 3SD

If keeping outliers:

1. Transform the dependent variable

2. Include without change, if you believe result will not be affected (e.g. similar after running the linear regression with and without the outlier)

If removing outliers:

Generally considered as last resort. Provide information about the data points removed (e.g. their value and impact on results)

6. Are variances along best fit line remains similar throughout?

Visual inspection of scatterplot to test for homoscedasticity

- regression standardized residuals on y-axis
- regression standardised predicted value on x-axis

If **there is homoscedasticity**, residuals/errors of prediction will be equal across the standardised predicted/fitted values (e.g. **plot will show no pattern, and will be approx. constantly spread**)

If there is heteroscedasticity, residuals will **not be evenly spread** (e.g. increasing funnel, decreasing funnel, fan shaped, etc):

- 1. Run a weighted least squares regression equation
- 2. Run a regression with robust standard errors
- 3. Run a robust regression
- 4. Transform dependent variable

7. Residuals approx. normally distributed?

Check histogram and/or Normal P-P Plot for normality of regression standardised residuals
To determine how well the model fits:

Percentage/proportion of variance explained (**using "Model Summary" table**) - **R:** refers to multiple correlation coefficient = absolute Pearson

- correlation coefficient between the 1 dependent and 1 independent variable, measuring the strength of association between the 2 variables (not usually of interest in linear regression analysis) R^2: refers to proportion of variation explained by the model in the
- sample (e.g. 0.129 means that 12.9% of the variance in the dependent variable can be explained by the independent variable) Adjusted R^2: refers an estimate of the proportion of variation explained
- by the model in the **population** (corrects for positive bias in the sample, hence would be lower than unadjusted). **Adjusted R square is also an** estimate of Cohen's effect size

Multiple regression

Checking for multicollinearity - occurs when 2 or more independent variables are highly correlated with each other

- + Check that independent variables have correlations <0.7
- + Check that tolerance value is >0.1 or VIF<10

Statistical significance of the model (refer to "ANOVA" table):

- p<0.05 indicates a statistically significant linear relationship

Interpreting coefficients - B refers to gradient, AKA increase in dependent variable per 1 unit of independent variable.

Predicting dependent variables - the predicted values are the expected and mean values + standard error + 95%Cl, using general linear model -> univariate.

Note: CI refers to the mean predicted value. SPSS does not produce predicted value for an individual, although it is possible.

Reporting results

A linear regression was run to understand the effect of average daily time spent watching TV on cholesterol concentration. To assess linearity a scatterplot of cholesterol concentration against average daily time spent watching TV with superimposed regression line was plotted. Visual inspection of these two plots indicated a linear relationship between the variables. There was homoscedasticity and normality of the residuals. One participant was one outlier with a cholesterol concentration of 7.98 mmol/L. They were removed from the analysis due to not representing the target population.

The prediction equation was: cholesterol concentration = -0.94 + 0.03697*time. Average daily time spent watching TV statistically significantly predicted cholesterol concentration, F(1, 97) = 14.39, p < .0005, accounting for 12.9% of the variation in cholesterol concentration with adjusted R2 = 12.0%, a medium size effect according to Cohen (1988). An extra minute of daily average time spent watching TV leads to a 0.037 (95% CI, 0.018 to 0.056) mmol/L increase in cholesterol concentration.

+ scatterplot