
Introduction to SPSS + 
Statistical Tests for Quantitative Data

By Research Comm :)



Overview

1. Introduction to stats
2. Deeper dive into stats
3. SPSS functions



Why SPSS

- Easy to learn (just need to know how to click buttons)
- For quick analysis of results
- Relevant calculations required for the test are mostly spoon-fed to us :)
- Intuitive interface

Why not SPSS

- Unable to handle more complex statistical analyses 
- $$$ :(





1. (re)Introduction to stats



Opening a File 



To open a 
Data file

To open an 
Output View file

Double-click to 
access folder

When starting SPSS Statistics



To open a 
Data file

To open an 
Output View file

When SPSS 
Statistics is already 

open



Data Setup



Data ViewEach column 
represents a variable



Variable View Each column 
represents a property 

of the variableEach row represents 
a new variable



COLUMNS
How long each variable 
name can be (otherwise 

truncated)

TYPE
The variable’s data 
type (e.g. numeric, 

currency)

WIDTH
Maximum no. of 

characters that can 
be entered

NAME
The name of the variable must 

start with a letter
X characters: /, * or blank 

space

DECIMAL
No. of decimal 

places

LABEL
Explanatory label 

for variable

VALUES
Text label for 
categorical 
variables

MISSING
Describe 
missing 
values

ALIGN
Alignment 
of data in 
Data View

MEASURE
Variable’s 

measurement 
type

Open variable 
type dialogue 
box to select 

type



Value Labels

Assign a numerical value 
to categorical groups

Key in numerical 
value

Key in category

Click “Add”



Entering Continuous Data



Entering Categorical Data



Entering Categorical Data – Data View

Click “Value Labels” on the 
main toolbar to display 

underlying codes



2. Intro to Stats

- Population vs Sample
- Descriptive vs Inferential Statistics
- Experimental design



What is Statistics?

Statistics is the study of how to collect, organise, analyse, and interpret numerical information 
and data

We measure variables from individuals

Eg. measuring CrCl in CKD patients



Population vs Sample

Population Data Sample Data

A group of people or objects with a 
common theme; when every member of 
that group is considered, it is a population

Small proportion of the population

Census Sample

Expensive Cheaper

Time-Consuming More efficient



Population vs Sample

Parameters: Measure that describes the entire population

Statistic: A measure that describes only a sample of a population



Descriptive vs Inferential Statistics

Descriptive Statistics (for both samples and populations): Involve methods of organizing, 
picturing, and summarizing information from samples AND populations

Inferential Statistics (for samples ONLY): Involves methods of using information from a sample 
to draw conclusions regarding the populations (HYPOTHESIS TESTING)

THIS FORMS THE BASIS OF ALL THAT WE 
DO IN STATISTICS



Experimental Design

1. State a hypothesis
2. Identify the individuals/population of interest
3. Specify the variables to measure
4. Collect data from your sample
5. Use descriptive or inferential statistics to answer your hypothesis



Categorical vs Continuous

● You just need to be 
familiar with these 3 
options for SPSS :D



Categorical vs Continuous



Experimental Design

EXAMPLE:

Hypothesis: Air pollution causes asthma in children who live in urban settings

Individuals/Population: Children in urban settings

Variables: Degree of air pollution (PSI?), Child is diagnosed with asthma



Experimental Design

Once we collect data for this study, we want to

a) compute descriptive statistics to describe

1. Associations & Correlations between variables
2. Prediction & Relationships
3. Group Differences

b) compute inferential statistics (aka hypothesis testing) to determine if the statistics in our 
sample can be generalised to the general population as population parameters



Experimental Design

The tests that we select are based on

a) The study design itself (especially the type of variables involved)

a) The data collected



3. More on stats

- Data normally distributed?
- Any outliers?
- Assumptions met for the specific test?**
- Reporting results



To first get an overview of your data…

- Menu bar -> Analyze -> Descriptive Statistics -> Explore…
- Input “Dependent List” and “Factor List”

- Factor list - e.g. can be used to separate “age” according to “male vs female”
- Select everything else you want to find out in the options buttons at the side

Output:

- Summary
- Descriptives
- Outliers
- Histograms
- *Checking for normality (look for table with Shapiro-Wilk)



Normality Tests

Numerical Method Graphical Method

Tests Skewness and Kurtosis values
Shapiro-Wilk test

Normal Q-Q Plot
Histogram

Advantages Objective judgment of normality Using individual’s own judgment 
to assess normality

Disadvantages Not sensitive enough at low sample sizes 
(i.e. not detecting violations of normality)

Overly sensitive to large sample sizes (i.e. 
very small deviations from normality are 
detected)

Lack of objectivity



Skewness and Kurtosis



Shapiro-Wilk

H0: Data assumes normal distribution

If p < 0.05 -> Reject H0 that data is normally distributed -> AKA Age is not normally distributed 
in this case



Histogram and Q-Q Plots
Histogram

- Look for classic bell-curve shape
- Width of columns (bins) would also 

affect the shape

Q-Q Plots

- Data is normally distributed if it is 
positioned along the diagonal line



Transforming Data



Performing Transformations





Moderately, positively skewed data
Type: 

SQRT(variable)

Apply square root 
transformation



Moderately, negatively skewed data
Type: SQRT(# -

variable)

Apply reflect and 
square root 

transformation
1. Find the largest 

dependent variable 
value

2. Add 1 to its value
3. Each dependent value 

has to be subtracted 
from the value in (2) 

4. Take the square root



Strongly, positively skewed data
Type: 

LG10(variable)

Apply logarithmic 
transformation



Strongly, negatively skewed data
Type: LOG10(# -

variable)

Apply reflect and 
logarithmic 

transformation
1. Find the largest 

dependent variable 
value

2. Add 1 to its value
3. Each dependent value 

has to be subtracted 
from the value in (2) 

4. Take the logarithm



Extremely, positively skewed data
Type: 1/variable

Apply 
inverse/reciproca
l transformation



Extremely, negatively skewed data
Type: 1/(# -
variable)

Apply reflect and 
inverse/reciproca
l transformation

1. Find the largest 
dependent variable 
value

2. Add 1 to its value
3. Each dependent value 

has to be subtracted 
from the value in (2) 

4. Take the inverse



Data Transformation

Positively Skewed Negatively Skewed

Square Root Reflect & Square Root

Log Reflect & Log

Inverse/Reciprocal Reflect & Inverse/Reciprocal



Outliers
o Mild outliers: > 1.5 x IQR below Q1 or above Q3 

* Extreme outliers: > 3.0 x IQR below Q1 or above Q3





Dealing with outliers

If keeping outliers:
1. Run non-parametric test instead
2. Modify by replacing with a less extreme value (e.g. next largest 
value)
3. Transform the dependent variable
4. Include without change, if you believe result will not be affected 
(e.g. similar after running the test with and without the outlier)



Dealing with outliers

If removing outliers:
- Generally considered as last resort.

- In your paper: Provide information about the data points removed 
(e.g. their value and impact on results)

Acceptable in the following example: To investigate the effect of exercise on 
young males. One participant's cholesterol concentration was particularly 
high (outlier), indicating considerable risk of heart disease. If the study 
initially wanted only healthy individuals, and exclude those with risk of heart 
diseases, then the data can be removed.



Why is testing for normality important?



After selecting the appropriate tests…

- Pearson’s correlation
- Independent t-test
- Mann-Whitney U test (non-parametric independent t-test)
- (One-way) ANOVA
- One-way repeated measures ANOVA (multiple paired-samples t-test)
- Linear regression



https://tinyurl.com/spsslkc



Pearson’s correlation

Used to determine the strength and direction of a linear relationship
between 2 continuous variables

Pearson correlation coefficient, r:
-1 (perfect negative linear relationship) 
+1 (perfect positive linear relationship)
0 (no relationship)



Examples
1. To determine whether there is an association between exam performance and 
time spent revising

2. To determine whether there is a relationship between "amount of cigarettes 
reduced" and "withdrawal pain" in participants who failed to quit smoking after 6 
months hypnotherapy intervention



Analyze -> Correlate -> Bivariate



Exclude cases pairwise: Any missing value or variable will only affect the 
analyses involving that variable

Exclude cases listwise: Any missing value or variable will affect all analyses 
involving that subject



Assumptions

1. Both variables are continuous (e.g. interval or ratio)
2. Both variables should be paired, each participant has 2 values: 1 for each 
variable (e.g. a student has 2 variables: revision time and exam performance)
3. Linear relationship between the 2 continuous variables
4. No significant outliers
5. Bivariate normality



Checking for linear relationship

Graphs -> Chart builder -> Scatter/Dot (drag and drop) -> Select x- and y-axis (drag 
and drop) -> Edit properties of axes under "Element Properties" -> Set 0 as 
minimum



If not linear?

1. Determine whether monotonic or non-monotonic relationship



2. If monotonic -> Go to Spearman's rank-order correlation OR try to 
transform data into linear relationship if ur a pro…

3. If non-monotonic -> may need to transform one or more variables to get 
a monotonic relationship



Interpreting results



Coefficient of determination

= square of correlation coefficient (r^2)
- Proportion of variance in one variable that is "explained" by the other 
variable 

-> e.g. If r^2=0.14, then daily time spent watching TV statistically 
explained 14% of the variability in cholesterol concentration



*In SPSS, p-value = .000 refers to p < 0.0005

Typically reported as p < 0.001

For p-values > 0.001, do write the actual values, rather than < 0.05

Note: Statistical significance here does not 
determine the strength of the relationship



Reporting results
Statistically significant:
A Pearson's product-moment correlation was run to assess the relationship between 
cholesterol concentration and daily time spent watching TV in males aged 45 to 65 
years. One hundred participants were recruited.

Preliminary analyses showed the relationship to be linear with both variables normally 
distributed, as assessed by Shapiro-Wilk's test (p > .05), and there were no outliers.

There was a statistically significant, moderate positive correlation between daily time 
spent watching TV and cholesterol concentration, r(98) = .37, p < .0005, with time spent 
watching TV explaining 14% of the variation in cholesterol concentration.



Reporting results
Not statistically significant:
A Pearson's product-moment correlation was run to assess the relationship between 
cholesterol concentration and daily time spent watching TV in males aged 45 to 65 years. 
One hundred participants were recruited.

Preliminary analyses showed the relationship to be linear with both variables normally 
distributed, as assessed by Shapiro-Wilk's test (p > .05), and there were no outliers.

There was a no statistically significant correlation between daily time spent watching TV 
and cholesterol concentration, r(98) = .28, p = .765, with time spent watching TV 
explaining 9% of the variation in cholesterol concentration.





Independent samples t-test

Parametric test used to determine whether difference between 2 
independent groups is significant



Examples

1. Whether there is a statistically significant difference in salary (dependent 
variable) between "under 30y/o" and "above 30y/o" groups
- Differences between 2 independent groups

2. Whether there is a statistically significant difference in the body fat in mm
(dependent variable) between the 2 groups split according to level of physical 
activity (independent variable) ('none', 'frequent' exercise)
- Differences between interventions



3. Whether the difference in change in blood glucose concentration for each 
group was significant in dietary group and control group at the end of the 6 
week period (can also look at two-way mixed ANOVA or one-way ANCOVA)
- Differences in change post intervention



Assumptions

1. One dependent variable, continuous or ordinal 
2. One independent variable, consisting of 2 categorical, independent groups 
3. Independence of observations (e.g. same participant cannot be in more than 1 
group, otherwise look at paired-samples t-test)
4. No significant outliers (dependent variables) within the groups of independent 
variables
5. Dependent variable approx. normally distributed for each group of independent 
variable
6. Homogeneity of variances of dependent variables in each group of independent 
variable



Explore…



o Mild outliers: > 1.5 x IQR 
below Q1 or above Q3 

* Extreme outliers: > 3.0 x 
IQR below Q1 or above Q3



Managing outliers
If keeping outliers:
1. Run non-parametric Mann-Whitney U test instead
2. Modify by replacing with a less extreme value (e.g. next largest value, 
meaning 2nd largest value = 5.55, the altered value of outlier = 5.56)
3. Transform the dependent variable
4. Include without change, if you believe result will not be affected (e.g. similar 
after running the test with and without the outlier)



If removing outliers:
Generally considered as last resort. Provide information about the data points 
removed (e.g. their value and impact on results)

Acceptable in the following example: To investigate the effect of exercise on 
young males. One participant's cholesterol concentration was particularly high 
(outlier), indicating considerable risk of heart disease. If the study initially 
wanted only healthy individuals, and exclude those with risk of heart diseases, 
then the data can be removed.



Effect size (Cohen, 1988)

* Journals are increasingly asking for effect 
sizes to be reported whenever possible :/



Statistical significance vs Effect size

Statistical significance: Only tells us whether there is a difference (whether an effect 
exists)

- DOES NOT tell us whether the difference is big, important or helpful in decision 
making

- If sample is sufficiently large, a stat test will almost always give significant difference
- E.g. increase in score by 1 point out of 100 points can also be significant…

Effect size: Tells us the magnitude of difference between groups



Statistical significance vs Clinical significance

E.g. Increased knee flexion angles in knee osteoarthritis

- MDC_90 value for knee flexion contracture: +6 degrees flexion (stratford)

- If results from gait analysis shows statistically significant difference of less than 
6 degrees of additional flexion -> Are these results clinically relevant?



Mann-Whitney U Test

Non-parametric test (equivalent of independent-samples t-test)

- Can be used when results that require independent-samples t-test do not 
follow normal distribution (from Shapiro-Wilk test), or have some outliers



Examples

1. Knee OA group vs Healthy group - comparing KOOS scores (0-100) or pain 
scores. Healthy group will likely have little to no knee pain and normal knee 
function. Knee OA group will likely have more pain, and poorer knee function, 
but these scores generally will not follow a normal distribution if sample sizes 
are not large enough

2. Working group vs Retired group - comparing stress levels (strongly agree, 
agree, neutral, disagree, strongly disagree).



Assumptions

1. One dependent variable, continuous or ordinal
2. One independent variable, consisting of 2 categorical, independent groups 
(e.g. male and female, employed and unemployed, intervention and control, 
bus and car)
3. Independence of observations (e.g. same participant cannot take both bus 
and car), otherwise go to Wilcoxon signed-rank test
4. Look at whether distribution of scores for each group of independent 
variable have same shape or different shape/variability



Additional steps…

Upon visual inspection of histogram,
If shape of both groups have the same shape -> Test can compare medians

If shape of both groups do not have same shape -> Test can compare mean ranks





Reporting results

For medians,
A Mann-Whitney U test was run to determine if there were differences in engagement score 
between males and females. Distributions of the engagement scores for males and females 
were similar, as assessed by visual inspection. Median engagement score for males (5.58) and 
females (5.38) was not statistically significantly different, U = 145, z = -1.488, p = .142, using an 
exact sampling distribution for U (Dineen & Blakesley, 1973).

For ranks,
A Mann-Whitney U test was run to determine if there were differences in engagement score 
between males and females. Distributions of the engagement scores for males and females 
were not similar, as assessed by visual inspection. Engagement scores for males (mean rank = 
23.25) were statistically significantly higher than for females (mean rank = 17.75), U = 218, z = -
3.422, p = .001, using an exact sampling distribution for U (Dineen & Blakesley, 1973).



One-way ANOVA

Parametric test (equivalent of multiple independent-samples t-test) used to 
determine whether difference between 3 or more independent groups

*Running multiple t-tests instead would increase Type I error rate. One-way 
ANOVA would control for the Type I error rate.



Examples

1. Whether there is a statistically significant difference in the body fat in mm 
(dependent variable) between the 3 groups split according to level of physical 
activity (independent variable) ('none', 'moderate', 'frequent' exercise)

2. Whether there is a difference in bone density (dependent variable) between 
the 3 groups split according to frequency of smoking (independent variable) 
(non-smoker, occasional, frequent)



Examples

3. Whether there is a difference in VO2max (dependent variable) between 
swimmers, runners and cyclists

4. Whether there is a difference in smoking cessation (dependent variable) 
based on treatment type (1 group with nicotine patches, 1 group with 
hypnotherapy, 1 group with moral support)



Assumptions
1. One dependent variable, continuous or ordinal 
2. One independent variable, consisting of 2 (typically 3) or more categorical, 
independent groups 
3. Independence of observations (e.g. same participant cannot be in more than 1 group)
4. No significant outliers (dependent variables) within the groups of independent 
variables
5. Dependent variable approx. normally distributed for each group of independent 
variable
6. Homogeneity of variances of dependent variables in each group of independent 
variable



- Analyze -> Compare means -> One-way ANOVA
- Options -> descriptive, homogeneity of variance test, Welch, means plot
- Post-hoc -> Tukey (homogeneity of variances not violated) + Games-Howell 

(homogeneity of variances violated)



Assumption of homogeneity of variances in a population: 
Levene's Test for Equality of Variances
- If population variance of both groups is equal, p > 0.05, meeting the 
assumption of homogeneity of variances
- If population variance of both groups is not equal, p < 0.05, violating the 
assumption of homogeneity of variances



When homogeneity of variances is met:
- Refer to ANOVA table for results -> Tells us whether difference exists between 
any of the groups

Tukey post hoc test: To test all possible group comparisons -> Tells us exactly 
which groups are different
- Can also use Bonferonni

When homogeneity of variances is violated:
- Refer to "Robust Tests of Equality of Means" table for results of Welch's ANOVA

Games-Howell hoc test: To test all possible group comparisons -> Tells us exactly 
which groups are different



Effect size: omega squared (ω2) or partial eta squared (η2)



Reporting results
One-way ANOVA not statistically significant, but variances were equal:
With test of assumptions: A one-way ANOVA was conducted to determine if the 
ability to cope with workplace-related stress (CWWS score) was different for 
groups with different physical activity levels. Participants were classified into four 
groups: sedentary (n = 7), low (n = 9), moderate (n = 8) and high levels of physical 
activity (n = 7). There were no outliers, as assessed by boxplot; data was normally 
distributed for each group, as assessed by Shapiro-Wilk test (p > .05); and there was 
homogeneity of variances, as assessed by Levene's test of homogeneity of 
variances (p = .120). Data is presented as mean ± standard deviation. CWWS score 
increased from the sedentary (4.2 ± 0.8), to low (5.9 ± 1.7), to moderate (7.1 ± 1.6) 
to high (7.5 ± 1.2) physical activity groups, in that order, but the differences 
between these physical activity groups was not statistically significant, F(3, 27) = 
1.116, p = .523.



Reporting results
One-way ANOVA was statistically significant, variances were equal and a post hoc test 
was carried out
Without test of assumptions: A one-way ANOVA was conducted to determine if the 
ability to cope with workplace-related stress (CWWS score) was different for groups with 
different physical activity levels. Participants were classified into four groups: sedentary 
(n = 7), low (n = 9), moderate (n = 8) and high levels of physical activity (n = 7). Data is 
presented as mean ± standard deviation. CWWS score was statistically significantly 
different between different physical activity groups, F(3, 27) = 8.316, p < .0005, ω2 = 
0.42. CWWS score increased from the sedentary (4.2 ± 0.8), to low (5.9 ± 1.7), to 
moderate (7.1 ± 1.6) to high (7.5 ± 1.2) physical activity groups, in that order. Tukey post 
hoc analysis revealed that the increase from sedentary to moderate (2.97, 95% CI (0.99 to 
4.96)) was statistically significant (p = .002), as well as the increase from sedentary to high 
(3.35, 95% CI (1.30 to 5.40), p = .001), but no other group differences were statistically 
significant.



One-way repeated measures ANOVA

Parametric test (equivalent of multiple paired-samples t-test)

Used to determine whether difference between the means of 3 or more levels of a 
within-subjects factor. 

- Participants are the same in the group, tested on 3 or more time 
durations/scores/treatments on the same dependent variable







Cross-over design

- Exposed to 2 conditions in a different order
- Group 1 - treatment A then B
- Group 2 - treatment B then A

Reduces possible bias associated with the order in which participants are exposed 
to a particular condition





Examples

1. Effects of duration of therapy on cigarette consumption (dependent variable) on 1 
group of 30 smokers. Cigarette consumption is measured and compared at 3 
different time points (time is the within-subjects factor): before therapy/0 months, 6 
months, 12 months mark

- Determine if there are differences between 3 or more time points

2. Red background vs green background vs blue background on reaction times
- Determine if there are differences between 3 or more 

conditions/treatments/interventions



- Determine if there are differences between 3 or more change scores

Same group of 30 participants, undergoing 3 or more different interventions

The same dependent variable (blood glucose concentration) is measured pre and post (1) 
exercise intervention, (2) dietary intervention and (3) no intervention/control

Change in blood glucose concentrations pre and post interventions is calculated, for all 3 
interventions, and are compared using one-way repeated measures ANOVA

*Can also use two-way repeated measures ANOVA



Linear regression

Used to assess the linear relationship between 2 continuous variables to predict the value of a 
dependent variable based on the value of the independent variable. Used to determine:
1. Whether linear regression between the 2 variables is statistically significant
2. How much variation in the dependent variable is explained by/due to the independent variable
3. Direction and magnitude of the relationship
4. Predict values of dependent variables based on different values of independent variables

Y = β0 + β1X + ε, where β0 is the intercept/constant, β1 is the slope coefficient/gradient, ε is the 
errors



Examples

1. Predict the distance athletes can run (dependent, continuous variable) in 30 min 
based on their VO2 max (independent, continuous variable)

2. Predict how much does the amount of time spent exercising explain cholesterol 
concentration



Assumptions

1. One dependent variable, continuous
2. One independent variable, continuous
3. Linear relationship (approx. straight line on scatterplot) present between 
dependent and independent variables
4. Independence of observations
5. No significant outliers
6. Variances along the best fit line remain similar throughout 
(homoscedasticity)
7. The residuals/errors of regression line are approx. normally distributed



Additional steps…



3. Linear relationship?

Visual inspection of scatterplot to determine linear relationship. If not linear,

1. Perform a transformation

2. Run a polynomial regression - where 1 or more independent variables is 
raised to a power of 2 or more (Y = β0 + β1X + ε to Y = β0 + β1X + β2X2 + ε). 
Possible for curved lines/U-/inverted-U shaped lines (however, may not fit all 
types of relationships)

3. Run a nonlinear regression



4. Independence of observations?

If you suspect that the observations could be related, interpret the 
Durbin-Watson test in "Model Summary" table.

Durbin-Watson test statistic is between 0-4. 
A value closer to 2 shows independence of errors (residuals)



5. Any outliers?

To determine outliers, either visually inspect the scatter plot, or perform casewise 
diagnostics to highlight any cases where the standardised residual > 3SD 

If keeping outliers:
1. Transform the dependent variable
2. Include without change, if you believe result will not be affected (e.g. similar after 
running the linear regression with and without the outlier)

If removing outliers:
Generally considered as last resort. Provide information about the data points removed 
(e.g. their value and impact on results)



6. Are variances along best fit line remains similar 
throughout?

Visual inspection of scatterplot to test for homoscedasticity
- regression standardized residuals on y-axis
- regression standardised predicted value on x-axis

If there is homoscedasticity, residuals/errors of prediction will be equal 
across the standardised predicted/fitted values (e.g. plot will show no 
pattern, and will be approx. constantly spread)



If there is heteroscedasticity, residuals will not be evenly spread
(e.g. increasing funnel, decreasing funnel, fan shaped, etc):

1. Run a weighted least squares regression equation
2. Run a regression with robust standard errors
3. Run a robust regression
4. Transform dependent variable



7. Residuals approx. normally distributed?

Check histogram and/or Normal P-P Plot for normality of regression 
standardised residuals



To determine how well the model fits:
Percentage/proportion of variance explained (using "Model Summary" table)

- R: refers to multiple correlation coefficient = absolute Pearson 
correlation coefficient between the 1 dependent and 1 independent 
variable, measuring the strength of association between the 2 variables 
(not usually of interest in linear regression analysis)

- R^2: refers to proportion of variation explained by the model in the 
sample (e.g. 0.129 means that 12.9% of the variance in the dependent 
variable can be explained by the independent variable)

- Adjusted R^2: refers an estimate of the proportion of variation explained 
by the model in the population (corrects for positive bias in the sample, 
hence would be lower than unadjusted). Adjusted R square is also an 
estimate of Cohen's effect size



Multiple regression

Checking for multicollinearity - occurs when 2 or more independent 
variables are highly correlated with each other

+ Check that independent variables have correlations <0.7
+ Check that tolerance value is >0.1 or VIF<10



Statistical significance of the model (refer to "ANOVA" table):
- p<0.05 indicates a statistically significant linear relationship

Interpreting coefficients - B refers to gradient, AKA increase in dependent 
variable per 1 unit of independent variable.

Predicting dependent variables - the predicted values are the expected and 
mean values + standard error + 95%CI, using general linear model -> 
univariate. 
Note: CI refers to the mean predicted value. SPSS does not produce predicted 
value for an individual, although it is possible. 



Reporting results

A linear regression was run to understand the effect of average daily time spent watching TV on 
cholesterol concentration. To assess linearity a scatterplot of cholesterol concentration against average 
daily time spent watching TV with superimposed regression line was plotted. Visual inspection of these 
two plots indicated a linear relationship between the variables. There was homoscedasticity and 
normality of the residuals. One participant was one outlier with a cholesterol concentration of 7.98 
mmol/L. They were removed from the analysis due to not representing the target population. 

The prediction equation was: cholesterol concentration = -0.94 + 0.03697*time. Average daily time 
spent watching TV statistically significantly predicted cholesterol concentration, F(1, 97) = 14.39, p < 
.0005, accounting for 12.9% of the variation in cholesterol concentration with adjusted R2 = 12.0%, a 
medium size effect according to Cohen (1988). An extra minute of daily average time spent watching 
TV leads to a 0.037 (95% CI, 0.018 to 0.056) mmol/L increase in cholesterol concentration. 

+ scatterplot


